1. Earl N. Myers performed a titration by adding $0.115 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(\mathrm{aq})$ to a 25.00 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$.

$$
2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

Reading (mL)	Trial 1	Trial 2	Trial 3
final reading	17.05	28.00	39.00
initial reading	4.00	17.05	28.00
volume NaOH added			

a) Calculate the volume of NaOH added in each trial.
b) Which solution was in the buret? \qquad
c) Why should we omit the result in Trial 1 in the calculation of the acid concentration.
d) Use Trials 2 \& 3 to calculate the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \cdot(0.0252 \mathrm{~mol} / \mathrm{L})$
2. $\quad 25.0 \mathrm{~mL}$ of $\mathrm{HCl}_{(\mathrm{aq})}$ is titrated against a solution of KOH with a concentration of $0.75 \mathrm{~mol} / \mathrm{L}$. The following data was obtained from the burette:

	Trial 1	Trial 2	Trial 3
Final Reading	14.3 mL	28.4 mL	42.6 mL
Initial Reading	0.1 mL	14.3 mL	28.4 mL
$\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{KCl}(\mathrm{aq})$			

Determine the concentration of the acid used. ($0.425 \mathrm{~mol} / \mathrm{L}$)
3. A primary standard of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ is used to determine the concentration of a hydrochloric acid solution. In the first trial a solution containing 0.5012 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (s) required 21.35 mL of $\mathrm{HCl}(\mathrm{aq})$ to reach the equivalence point.

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq})
$$

a) Based on this trial, what is the concentration of $\mathrm{HCl}_{(\mathrm{aq})}$? $(0.443 \mathrm{~mol} / \mathrm{L})$
(b) Why is it important to perform more than one trial?
4. A pipette is used to transfer four 25.00 mL samples of hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, to flasks. Each sample is then titrated to the endpoint using a $0.001887 \mathrm{~mol} / \mathrm{L}$ solution sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The results below were obtained. What is the concentration of $\mathrm{HCl}(\mathrm{aq})$?

$$
\left.2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I}}\right)+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq})
$$

Trial	1	2	3	4
Final reading (mL)	20.98	33.26	33.12	45.43
Initial reading (mL)	8.08	20.98	20.83	33.12
Volume of Na 2 CO added (mL)	12.90	12.28	12.29	12.31

Calculate the molar concentration of the $\mathrm{HCl}(\mathrm{aq}) \cdot(0.00187 \mathrm{~mol} / \mathrm{L})$

