Titrations Curves

1. The table below shows the results of tests performed on four $0.10 \mathrm{~mol} / \mathrm{L}$ unknown solutions. One solution is $\mathrm{NaOH}(\mathrm{aq})$ and another is $\mathrm{NaCl}(\mathrm{aq})$. Determine which solution is $\mathrm{NaOH}(\mathrm{aq})$ and which is $\mathrm{NaCl}(\mathrm{aq})$. Justify your answer.

Solution	Conductivity of Solution	Colour with Bromothymol Blue
A	good	blue
B	good	yellow
C	good	green
D	poor	blue

\qquad
2. The table below shows three distinct colour changes observed using three different indicators during the titration of 25.0 mL of $\mathrm{H}_{3} \mathrm{AsO}_{4}(\mathrm{aq})$ with $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$.

Indicator	Colour Change
indigo carmine	blue to yellow
phenol red	yellow to red
thymolphthalein	colourless to blue

(i) Sketch and label a titration curve for the complete titration.

(ii) Write the balanced equation for the reaction that occurs when thymolphthalein changes colour.
(iii) If the colour change associated with thymolphthalein occurred when 60.0 mL of $\mathrm{NaOH}(\mathrm{aq})$ was added, calculate the concentration of $\mathrm{H}_{3} \mathrm{AsO}_{4}(\mathrm{aq}) .(0.120 \mathrm{~mol} / \mathrm{L})$
3. What is the pH of a solution in which the indicators orange IV is yellow and methyl red is red?
4. The graph provided shows the titration of a 0.10 M unknown base with 0.10 M HCl .
a) What is a suitable indicator for this titration. Explain.
b) Is the unknown base weak or strong? Explain.
\qquad
\qquad
\qquad

5. A titration experiment was performed by adding $0.120 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(\mathrm{aq})$ solution to 30.0 mL of an unknown monoprotic acid solution. Given the titration curve below, determine the concentration of the unknown acid. ($0.0800 \mathrm{~mol} / \mathrm{L}$)

6. A $0.10 \mathrm{~mol} / \mathrm{L}$ aqueous solution of a weak acid $\mathrm{HA}(\mathrm{aq})$, caused litmus to turn red and methyl orange to turn yellow. Calculate the percent reaction for $\mathrm{HA}(\mathrm{aq}) .(0.0355 \%)$

