Ionization Konstants

1.a) The initial concentration of a solution of methlyamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, is $0.100 \mathrm{~mol} / \mathrm{L}$. Calculate K_{b} for a methlyamine solution if the equilibrium $\left[\mathrm{OH}^{-}\right]=6.27 \times 10^{-3} \mathrm{M} \quad$ (0.000419)

$$
\mathrm{CH}_{3} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

b) Calculate the \% dissociation (percent reaction with water) for methlyamine. (6.27%)
2.a) Calculate the K_{a} for a $0.39 \mathrm{~mol} / \mathrm{L}$ solution of iodic acid, $\mathrm{HIO}_{3(\mathrm{aq})}$, which has a $\mathrm{pH}=0.739$. (0.16)
b) Calculate the \% dissociation, or the percent reaction with water, for iodic acid. (47\%)
3.a) Find K_{a} for a solution of salicylic acid, $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{3(\mathrm{aq})}$, which had an initial concentration of $0.25 \mathrm{~mol} / \mathrm{L}$ and an equilibrium pH of 1.326. (0.011)
b) Calculate the \% dissociation, or the percent reaction with water, for $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{3(\mathrm{aq)} \text {. }}$ (19\%)
4.a) Find K_{b} for a solution of piperdine, $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{(\mathrm{aq})}$, which had an initial concentration of 0.015 $\mathrm{mol} / \mathrm{L}$ and a $\mathrm{pOH}=2.42 \cdot(0.0013)$

$$
\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NH}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

b) Calculate the \% dissociation, or the percent reaction with water, for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}_{\text {(aq) }}$.

