Ionization Konstants

1.a) The initial concentration of a solution of methlyamine, CH_3NH_2 , is 0.100 mol/L. Calculate K_b for a methlyamine solution if the equilibrium [OH $^-$] = 6.27 x 10 $^{-3}$ M (0.000419)

 $CH_3NH_{2(aq)} + H_2O_{(l)} \rightleftharpoons CH_3NH_{3(aq)}^+ + OH_{(aq)}^-$

b) Calculate the % dissociation (percent reaction with water) for methlyamine. (6.27 %)

2.a) Calculate the K_a for a 0.39 mol/L solution of iodic acid, $HIO_{3(aq)}$, which has a pH = 0.739. (0.16)

b) Calculate the % dissociation, or the percent reaction with water, for iodic acid. (47%)

3.a) Find K_a for a solution of salicylic acid, $HC_7H_5O_{3(aq)}$, which had an **initial** concentration of 0.25 mol/L and an **equilibrium** pH of 1.326. (0.011)

b) Calculate the % dissociation, or the percent reaction with water, for $HC_7H_5O_{3(aq)}$. (19%)

4.a) Find K_b for a solution of piperdine, $C_5H_{11}N_{(aq)}$, which had an initial concentration of 0.015 mol/L and a pOH = 2.42 . (0.0013)

$$C_5H_{11}N_{(aq)} + H_2O_{(I)} \rightleftharpoons C_5H_{11}NH^+_{(aq)} + OH^-_{(aq)}$$

b) Calculate the % dissociation, or the percent reaction with water, for $C_5H_{11}N_{(aq)}$. (25 %)