Reaction Rates

- 1. What does 'reaction rate' mean in
- qualitative terms_____ a)
- b) quantitative terms
- 2. Give 3 everyday examples of each:
- a) fast reaction_____
- b) slow reaction
- 3. 9.6 g of marble chips (CaCO₃) is added to a beaker of 2.00 mol/L hydrochloric acid resulting in the reaction below. After 4 min 15 sec the reaction is complete and there is no visible evidence of any marble chips at the bottom of the beaker

$$CaCO_{3(s)}$$
 + 2 $HCI_{(aq)}$ \rightarrow $CaCI_{2(aq)}$ + $CO_{2(g)}$ + $H_2O_{(l)}$

Determine the rate of this reaction in g/min AND in moles/min. a)

- How would the time change if 3.00 mol/L HCl_(aq) were used?_____ b)
- Suggest TWO other methods of measuring the rate of this reaction quantitatively. c)
- 8.80 g of Mg is added to a beaker containing $H_2SO_{4(aq)}$ at 20 °C. After 3.00 min there 4. was 5.20 g of Mg unreacted at the bottom of the beaker.
- a) Calculate the rate of this reaction in grams per second.
- b) Predict the reaction rate if the same reaction were conducted at 30 °C.
- 5. For each of the following, indicate how the rate of reaction might be measured.

a)
$$N_{2(q)} + 3 H_{2(q)} \rightarrow 2 NH_{3(q)}$$

b)
$$CaCO_{3(s)} + 2 HCI_{(aq)} \rightarrow CaCI_{2(aq)} + H_2O_{(q)} + CO_{2(q)}$$

c)
$$N_{2(aq)} + 5 O_{2(q)} + H_2 O_{(l)} \rightarrow 2 HNO_{3(aq)}$$

d)
$$2 SO_{2(g)} + O_{2(s)} \rightarrow 2 SO_{3(g)}$$

e)
$$P_{4(s)} + 5 O_{2(g)} \rightarrow P_4 O_{10(aq)}$$

Iron(II) sulfide reacts with dilute hydrochloric acid as shown below: 6.

$$FeS_{(s)} + 2 HCI_{(aq)} \rightarrow FeCI_{2(aq)} + H_2S_{(q)}$$

List 2 changes that could be made to this reaction that could increase the rate.

- 7. Use Collision Theory to fully explain each of the following observations:
- Wood shavings burn more rapidly than a log. a)
- b) Fuels burn more rapidly in pure oxygen than in air.
- Nitroglycerin is a liquid that can explode when shaken yet it can be stored in a glass c) bottle for many years without reacting.
- Aluminum siding covers the exterior of many buildings but a bottle of powdered d) aluminum is marked 'flammable'.
- $I_{(aq)}^{-}$ reacts rapidly with $Pb_{(aq)}^{2+}$ but $Pb_{(s)}$ reacts very slowly with $I_{2(s)}$ e)
- propane C_3H_8 burns more rapidly than kerosene $C_{10}H_{22}$. f)