Le Châtelier's Principle

According to Le Châtelier's Principle, when a system at equilibrium is subjected to a stress, the equilibrium will shift in the direction that will minimize the effect of the stress.

For each of the following systems in chemical equilibrium, predict the effect of the given change on the concentration of the specific substances. Write \mathbf{I} if the concentration increases, \mathbf{D} if the concentration decreases or \mathbf{R} if the concentration remains the same.

System \#1: $\quad 2 \mathbf{N H}_{\mathbf{3 (g)}} \rightleftarrows \mathbf{N}_{2(\mathrm{~g})}+\mathbf{3} \mathbf{H}_{\mathbf{2 (g)}} \quad \Delta H=+92 \mathrm{~kJ}$

1. Stress: Increase the $\left[\mathrm{N}_{2}\right]$. Shifts to the \qquad
What is the effect on the:
A) $\left[\mathrm{NH}_{3(g)}\right]$?
B) $\left[\mathrm{H}_{2(g)}\right]$?
1A
\qquad
1B \qquad
2. Stress: Increase Temperature. Shifts to the \qquad What is the effect on the:
A) $\left[\mathrm{N}_{2(\mathrm{~g})}\right]$?
2A
B) $\left[\mathrm{NH}_{3(\mathrm{~g})}\right]$?
2B
\qquad
\qquad
3. Stress: Increase Pressure/Decrease Volume. Shifts to the \qquad
What is the effect on the:
A) $\left[\mathrm{N}_{2(\mathrm{~g})}\right]$?
B) $\left[\mathrm{NH}_{3(g)}\right]$
3B

3A \qquad
\qquad

System \#2: $\quad 2 \mathbf{N O}_{(\mathrm{g})} \rightleftarrows \mathbf{N}_{\mathbf{2 (g)}}+\mathbf{O}_{\mathbf{2 (g)}}+$ heat
4. Stress: Decrease $\left[\mathrm{O}_{2(g)}\right]$. Shifts to the \qquad
What is the effect on the:
A) $\left[\mathrm{N}_{2(g)}\right]$

4A \qquad
B) $[\mathrm{NO}]$

4B \qquad
5. Stress: Decrease Temperature. Shifts to the \qquad
What is the effect on the:
A) $\left[\mathrm{O}_{2(\mathrm{~g})}\right]$?
B) $\left[\mathrm{NO}_{(\mathrm{g})}\right]$?

5A
5B \qquad
6. Stress: Increase Pressure. Shifts to the \qquad
What is the effect on the:
A) number of moles of $\mathrm{O}_{2(9)}$?
B) number of moles of $\mathrm{NO}_{(9)}$?

6A
6B \qquad

$$
\text { System \#3: } \quad 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-1384 \mathrm{~kJ}
$$

7. Stress: Increase $\left[\mathrm{SO}_{2(\mathrm{~g})}\right]$. Shifts to the \qquad
What is the effect on the:
A) $\left[\mathrm{O}_{2(\mathrm{~g})}\right]$?
7A
B) $\left[\mathrm{SO}_{3(\mathrm{~g})}\right]$?
7B
\qquad
\qquad
8. Stress: Increase Temperature. Shifts to the \qquad
What is the effect on:
A) $\left[\mathrm{SO}_{2(\mathrm{~g})}\right]$?
B) $\left[\mathrm{SO}_{3(\mathrm{~g})}\right]$?

8A
8B \qquad
9. Stress: Decrease Pressure/Increase Volume. Shifts to the \qquad What is the effect on the:
A) number of moles of O_{2} ?
B) number of moles of $\mathrm{SO}_{3(\mathrm{~g})}$?

9A \qquad
9B \qquad

System \#4: heat $+2 \mathrm{KClO}_{3(\mathrm{~s})} \rightleftharpoons 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathbf{O}_{\mathbf{2 (\mathrm { g })}}$
10. Stress: Add $\mathrm{KClO}_{3(s)}$. Shifts to the \qquad
What is the effect on the:
A) $\left[\mathrm{O}_{2(\mathrm{~g})}\right]$?
10A \qquad
B) $\left[\mathrm{KCl}_{(s)}\right]$?
10B \qquad
11. Stress: Increase Temperature. Shifts to the \qquad
What is the effect on:
A) $\left[\mathrm{O}_{2(\mathrm{~g})}\right]$?
11A
B) $\left[\mathrm{KClO}_{3(s)}\right]$?
11B
\qquad
\qquad
12. Stress: Decrease Pressure/Increase Volume. Shifts to the \qquad
What is the effect on the:
A) number of moles of O_{2} ?
12A
B) mass of $\mathrm{KClO}_{3(s)}$?
\qquad
\qquad

