ICE tables - Chemistry is cool!!

1. Initially 4.00 mol of $\mathrm{HCl}_{(\mathrm{g})}$ and 4.00 mol of $\mathrm{O}_{2(\mathrm{~g})}$ were placed in a 1.00 L vessel and allowed to establish equilibrium. If the vessel contained 0.500 mol of $\mathrm{Cl}_{2(\mathrm{~g})}$ at equilibrium, what is the value of $\mathrm{K}_{\text {eq }}$? (0.00794)

$$
2 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

2. Consider the equilibrium:

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

An initial mixture composed of 0.040 mol of SO_{2} and 0.0250 mol of O_{2} were put in an empty 2.00 L reaction vessel. After equilibrium was reached, the concentration of SO_{3} was $0.014 \mathrm{~mol} / \mathrm{L}$. What is the equilibrium constant $\mathrm{K}_{\text {eq }}$ for this system? (990)
3. The equilibrium below occurs when nitrogen monoxide is placed in a closed container and decomposes.

$$
2 \mathrm{NO}_{(\mathrm{g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

When 0.250 mol of $\mathrm{NO}_{(\mathrm{g})}$ is placed in a sealed 1.0 L container at a constant temperature, 40.0% of it decomposes. Calculate the equilibrium constant at this temperature. (0.111)
4. $\quad 2.50 \mathrm{~mol}$ of H_{2}, and 2.50 mol of I_{2} (g) are placed in a 1.00 L container at $127^{\circ} \mathrm{C}$. When the equilibrium below is reached, 35.5% of $\mathrm{I}_{2(\mathrm{~g})}$ has reacted. Calculate the value of the equilibrium constant at $127^{\circ} \mathrm{C}$. (1.21)

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

0.500 mol of $\mathrm{H} 2 \mathrm{O} 2(\mathrm{~g})$ are placed in a 2.00 L flask at a certain temperature and allowed to establish the equilibrium below. If there are 0.150 mol of $\mathrm{O} 2(\mathrm{~g})$ in the flask at equilibrium, what is K for the reaction?
$2 \mathrm{H} 2 \mathrm{O} 2(\mathrm{~g}) 2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})+\mathrm{O} 2(\mathrm{~g})$

