1. An equilibrium was established in a 1.00 L reaction vessel at $250^{\circ} \mathrm{C}$. The initial concentration of $\mathrm{PCl}_{5(g)}$ was $0.861 \mathrm{~mol} / \mathrm{L}$. The vessel was found to contain $0.257 \mathrm{~mol} / \mathrm{L}$ of chlorine gas at equilibrium.

$$
\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{(\mathrm{g})}+2 \mathrm{Cl}_{2(\mathrm{~g})}
$$

Calculate K_{c} for the reaction at this temperature. (0.0116)
2. $\quad 0.563 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{HI}_{(\mathrm{g})}$ was placed in a 1.00 L reaction vessel. The temperature was raised to $300^{\circ} \mathrm{C}$ and maintained until equilibrium was established. At equilibrium the vessel was found to contain $0.158 \mathrm{~mol} / \mathrm{L}$ each of hydrogen and iodine.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}
$$

Calculate the value for K_{c} for this equilibrium. (2.44)
3. Bromine chloride, $\mathrm{BrCl}_{(\mathrm{g})}$ decomposes to form its elements. $0.537 \mathrm{~mol} / \mathrm{L} \mathrm{of} \mathrm{BrCl}_{(\mathrm{g})}$ and $0.100 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{Cl}_{2(\mathrm{~g})}$ were placed in a closed container and allowed to establish an equilibrium at $200^{\circ} \mathrm{C}$. The equilibrium concentration of chlorine gas was measured to be $0.215 \mathrm{~mol} / \mathrm{L}$.

$$
2 \mathrm{BrCl}_{(\mathrm{g})} \rightleftharpoons \mathrm{Br}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

Determine K_{c} for this equilibrium. (0.262)
4. The decomposition of nitrogen monoxide gives this equilibrium:

$$
2 \mathrm{NO}_{(\mathrm{g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

Initially $0.867 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{NO}_{(\mathrm{g})}$ was placed in a 1.0 L sealed flask at $500^{\circ} \mathrm{C}$. If the percent reaction of $\mathrm{NO}_{(\mathrm{g})}$ is 35%, calculate K_{c}. (0.0725)
5. In a 1.00 L vessel, 0.500 mol of nitrogen gas and 0.500 mol of oxygen gas were reacted at 773 K to produce nitrogen monoxide gas. The percent reaction was found to be 20.0%.

$$
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}
$$

Calculate the equilibrium concentrations of all three species.

$$
\left(N_{2} \& O_{2}=0.4 \mathrm{~mol} / \mathrm{L}: N O=0.2 \mathrm{~mol} / \mathrm{L}\right)
$$

6. An equilibrium was established in a 1.00 L container when 0.700 mol of phosphorus pentachloride gas was decomposed at 500 K . At equilibrium, the concentration of chlorine gas was $0.0740 \mathrm{~mol} / \mathrm{L}$. ($2.43 \times \mathbf{1 0}^{-11}$)

$$
4 \mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{P}_{4(\mathrm{~s})}+10 \mathrm{Cl}_{2(\mathrm{~g})}
$$

Calculate the equilibrium constant for this system.

