Equilibrium Calculations

1. The decomposition of nitrogen monoxide gives this equilibrium:

$$
2 \mathrm{NO}_{(\mathrm{g})} \rightleftharpoons \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

Initially $0.867 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{NO}_{(\mathrm{g})}$ was placed in a 1.0 L sealed flask at $500^{\circ} \mathrm{C}$. If the percent reaction of $\mathrm{NO}_{(\mathrm{g})}$ is 35%, calculate K_{c}. (0.0725)
2. In a 1.00 L vessel, 0.500 mol of nitrogen gas and 0.500 mol of oxygen gas were reacted at 773 K to produce nitrogen monoxide gas. The percent reaction was found to be 20.0%.

$$
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}
$$

Calculate the equilibrium concentrations of all three species.

$$
\left(\mathrm{N}_{2} \& \mathrm{O}_{2}=0.4 \mathrm{~mol} / \mathrm{L}: N O=0.2 \mathrm{~mol} / \mathrm{L}\right)
$$

3. An equilibrium was established in a 1.00 L container when 0.700 mol of phosphorus pentachloride gas was decomposed at 500 K . At equilibrium, the concentration of chlorine gas was $0.0740 \mathrm{~mol} / \mathrm{L}$. (omit solids; $2.43 \times \mathbf{1 0}^{-11}$)

$$
4 \mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{P}_{4(\mathrm{~s})}+10 \mathrm{Cl}_{2(\mathrm{~g})}
$$

Calculate the equilibrium constant for this system.
4. After $0.869 \mathrm{~mol} / \mathrm{L} \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ was added to a 1.00 L container at $105^{\circ} \mathrm{C}$, a brown gas, NO_{2}, appeared. The percent reaction of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ was found to be 36%.

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

Calculate the equilibrium constant for this system. (0.704)
5. At high temperatures, nitrogen and oxygen gases react to produce nitrogen monoxide. Calculate the equilibrium concentration of nitrogen monoxide if the equilibrium concentrations of oxygen and nitrogen are $0.357 \mathrm{~mol} / \mathrm{L}$ and K is 2.8×10^{-4} at 1800 K . ($0.00597 \mathrm{~mol} / \mathrm{L}$)

$$
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}
$$

6. $\quad 1.32 \mathrm{~mol} / \mathrm{L} \mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ was placed in a sealed vessel. Calculate the equilibrium concentration of the products, $\mathrm{NO}_{2(\mathrm{~g})}$ and $\mathrm{O}_{2(\mathrm{~g})}$, if the percent reaction of $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$ was measured to be 15%.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightleftharpoons 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

$$
\left(\mathrm{NO}_{2}=0.36 \mathrm{~mol} / \mathrm{L}: O_{s}=0.099 \mathrm{~mol} / \mathrm{L}\right)
$$

