1. Combustion (p. 340)

- all hydrocarbons and most derivatives undergo combustion
- products of complete combustion are $CO_{2(g)}$ and $H_2O_{(g)}$

General Equation:

hydrocarbon +
$$O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$$

eg.
$$CH_{4(q)} + 2O_{2(q)} \rightarrow CO_{2(q)} + 2H_2O_{(q)}$$

Practice:

2. Cracking & Reforming

- **cracking** occurs when a large hydrocarbon is broken into smaller hydrocarbons.
- H_{2 (q)} is needed for cracking.

eg.

- reforming occurs when smaller hydrocarbons combine to form larger hydrocarbons.
- H_{2 (a)} is produced by reforming.

eg. ethane + butane
$$\rightarrow$$
 hexane + $H_{2(q)}$

- there are many possible isomers for both cracking and reforming reactions.
- both reactions may be initiated by high temperature (**thermal**) or by use of special chemicals (**catalytic**)

Practice:

decane +
$$H_{2(g)} \rightarrow$$

nonane + $H_{2(g)} \rightarrow$

$$+ H_{2(g)}$$

3. Substitution (pp. 344, 362)

- happens in *alkanes* and *aromatics*
- occur in the prescence of light ($h\nu$)
- a H atom is replaced by a halogen atom

hv

General Equation:

$$R-H + X_2 \rightarrow R-X + HX$$

eg.

U do:

$$CH_4 + I_2 \xrightarrow{hv}$$

benzene +
$$Br_2$$
 \xrightarrow{hv}

fluorobenzene +
$$F_2$$
 $\stackrel{hv}{\rightarrow}$

(draw 3 possible isomers)

$$C_5H_{12} + Br_2 \xrightarrow{hv}$$

(NAME only 2 organic isomers)

4. Addition (p. 349)

- occur in alkenes and alkynes
- a molecule adds 'across' a double or triple bond
- the new molecule has fewer multiple bonds (ie. a double bond is changed to a single bond)

General Equation:

eg.

Ewe Dew:

(draw 2 possible isomers)

(NAME 2 possible isomers)

(draw 2 possible isomers)

5. Esterification (p. 410)

- reaction between an alcohol and a carboxylic acid
- an acid catalyst (H₂SO₄ or H⁺) and heat(Δ) is needed for the reaction to occur

General Equation: Carboxylic acid + alcohol $\frac{H^+}{\Delta}$ ester + water

eg. propanoic acid + ethanol $\xrightarrow{H^+}$ ethyl propanoate + water

Use structural formulas to complete the following:

butanoic acid + 1-propanol
$$\frac{H^+}{\Lambda}$$

pentanoic acid + methanol H^+ Δ

6. Elimination (p. 390)

- occur in alcohols
- water is removed using heat (Δ) and an acid catalyst (H_2SO_4 or H^+)

General Equation: alcohol $\xrightarrow{H^+}$ alkene + H₂O

eg.
$$CH_3CH_2OH \xrightarrow{H^+} CH_2=CH_2 + H_2O$$

U do:

$$CH_3$$
- CH_2 - CH_2 OH A

$$CH_3$$
- CH_2 - $CHOH$ - CH_3 $\xrightarrow{H^+}$ $\xrightarrow{\Delta}$

(draw 2 possible isomers)

7. Elimination (p. 390)

- occur in alkyl halides
- a metal hydroxide is needed to remove the halogen atom

eg.

Your turn:

1-bromobutane + LiOH →

(draw two possible isomers)