1. How many moles of nitrogen are needed to react with 14.0 mol of oxygen to produce nitrogen dioxide?

$$
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}
$$

2. How many moles of aluminum chloride can be produced from the reaction of chlorine with 10.8 mol of aluminum ?

$$
\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{Al}_{(\mathrm{s})} \rightarrow \mathrm{AlCl}_{3(\mathrm{~s})}
$$

3. How many moles of water will be produced when 7.50 mol of propane are burned?

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

4. How many moles of hydrogen are produced when 13.0 mol of zinc react with hydrochloric acid, $\mathrm{HCl}_{(\text {(aq) }}$?

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnCl}_{2}(\mathrm{aq})
$$

5. How many moles of oxygen will be formed when 10.2 mol of iron(III) oxide decompose to form iron and oxygen ?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow \mathrm{Fe}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}
$$

6. How many moles of water will be produced from the reaction of nitric acid, $\mathrm{HNO}_{3(\mathrm{aq})}$, with 2.5 mol of solid aluminum hydroxide?
$\mathrm{HNO}_{3(\mathrm{aq)}}+\mathrm{Al}(\mathrm{OH})_{3(\mathrm{aq)}} \rightarrow$
7. How many moles of lead (II) chloride will be produced when lead (II) nitrate reacts with 2.5 mol of sodium chloride?

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NaCl} \rightarrow
$$

8. How many moles of bromine are needed to react with enough lithium to produce 1.35×10^{11} moles lithium bromide?

$$
\mathrm{Li}_{(\mathrm{s})}+\mathrm{Br}_{2(1)} \rightarrow
$$

9. How many mol of oxygen will be formed when 12 mol of aluminum oxide decompose to form aluminum and oxygen ?

$$
\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow
$$

10. How many moles of $\mathrm{CO}_{2(g)}$ will be produced by the complete combustion of 1.0 kmol of glucose?

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

