1. How many moles of chlorine are needed to react with 0.25 g of lithium to produce lithium chloride ? (0.018 mol)

$$
\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{Li}_{(\mathrm{s})} \rightarrow
$$

2. Calculate the number of moles of aluminum chloride that can be produced from the reaction of 7.00 g of chlorine with aluminum. $\left(6.58 \times 10^{-2} \mathrm{~mol}\right)$

$$
\mathrm{Al}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow
$$

3. Potassium chloride and iodine are produced from a reaction between aqueous potassium iodide and chlorine gas. Determine the number of moles of $\mathrm{I}_{2(\mathrm{~g})}$ produced when 74.5 g of KCl results. (0.500 mol)

$$
\mathrm{KCl}_{(\mathrm{aq})}+\mathrm{I}_{2_{(\mathrm{g})}} \rightarrow
$$

4. How many moles of oxygen will be formed when 102 g of aluminum oxide decompose to form aluminum and oxygen? $(1.50 \mathrm{~mol})$
5. How many moles of potassium are needed to react with water to form potassium hydroxide and 6.0 g of hydrogen? $(5.9 \mathrm{~mol})$
6. If 0.50 g of sodium reacts with oxygen, how many moles of sodium oxide will be formed? ($1.1 \times 10^{-2} \mathrm{~mol}$)
7. How many moles of magnesium are needed to react with 27 g of iodine to form magnesium iodide? (0.11 mol)
8. Determine the number of moles of sodium chloride produced from the reaction of hydrochloric acid with solution containing 25.0 g sodium hydroxide. (0.625 mol)
