1. In the production of nitrogen dioxide, how many grams of nitrogen are needed to react with 12.50 mol of oxygen to? (175.1 g)

$$
\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{NO}_{2(\mathrm{~g})}
$$

2. How many grams of aluminum chloride can be produced from the reaction of chlorine and 1.85 mol of aluminum ? (247 g)

$$
\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{Al}_{(\mathrm{s})} \rightarrow \mathrm{AlCl}_{3(\mathrm{~s})}
$$

3. What mass of water will be produced when 4.55 mol of propane are burned in a Bunsen burner? (328 g)

$$
\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

4. How many grams of hydrogen are produced when 1.50 mol of zinc react with hydrochloric acid, $\mathrm{HCl}_{(\mathrm{aq})}$? (3.03 g)

$$
\mathrm{Zn}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

5. What mass of oxygen will be formed when 0.102 mol of iron(III) oxide decompose to form iron and oxygen? $(4.90 \mathrm{~g})$

$$
\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~g})} \rightarrow \mathrm{Fe}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}
$$

6. What mass of water will be produced from the reaction of nitric acid, $\mathrm{HNO}_{3(\text { aq) })}$, with 0.500 mol of aluminum hydroxide solid? (27.0 g)
