Law of Conservation of Mass: In a chemical reaction, the total mass of reactants always equals the total mass of products.

1. The decomposition of 500.00 g of $\mathrm{Na}_{3} \mathrm{~N}$ produces 323.20 g of N_{2}. How much Na is produced in this decomposition?
2. What mass of oxygen is needed to react with 6.49 g of aluminum to produce 12.26 g of aluminum oxide?
3. To produce 90.1 g of water, what mass of hydrogen gas is needed to react with 80.0 g of oxygen?
4. If 3.55 g of chlorine reacts with exactly 2.29 g of sodium, what mass of NaCl will be produced?
Percent Yield (p. 138)

Define: Actual yield \qquad
Theoretical Yield \qquad

$$
\text { Percentage Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} X 100 \%
$$

5. $\quad 20.0 \mathrm{~g}$ of bromic acid, $\mathrm{HBrO}_{3(\mathrm{aq})}$, is reacted with excess HBr .

$$
\mathrm{HBrO}_{3(\mathrm{aq})}+5 \mathrm{HBr}_{(\mathrm{aq})} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+3 \mathrm{Br}_{2(\mathrm{aq})}
$$

(a) What is the theoretical yield of Br_{2} for this reaction?
(b) If 47.3 g of Br_{2} are produced, what is the percentage yield of Br_{2} ?
6. Barium sulfate forms as a precipitate in the following reaction:

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\mathrm{aq})}
$$

When 35.0 g of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ are reacted with excess $\mathrm{Na}_{2} \mathrm{SO}_{4}, 29.8 \mathrm{~g}$ of BaSO_{4} are recovered by the chemist.
(a) Calculate the theoretical yield of BaSO_{4}.
(b) Calculate the percentage yield of BaSO_{4}.
7. Yeasts can act on a sugar, such as glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, to produce ethyl alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, and carbon dioxide.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{l})}+2 \mathrm{CO}_{2(\mathrm{~g})}
$$

If 223 g of ethyl alcohol are recovered after 1.63 kg of glucose react, what is the percentage yield of the reaction?

