Specific Heat Capacity (c)

- the quantity of energy, in Joules (J), needed to change the temperature of one gram (g) of a substance by one degree Celsius (${ }^{\circ} \mathrm{C}$).
- \quad c values are on p. 632 (will be provided on the public exam)
eg. c for water is $4.184 \mathrm{~J} / g \cdot{ }^{\circ} \mathrm{C}$
Formula: $q=m c \Delta T \quad q=$ heat lost or gained
$\mathrm{m}=$ mass of object heated/cooled
$\Delta \mathrm{T}=$ change in temperature
$\mathrm{c}=$ specific heat capacity $\Delta T=T_{2}-T_{1}$
- You will be given all but one of the above variables and asked to find the missing variable.

Examples:

1. A student must use 225 mL of hot water in a lab procedure. Calculate the amount of heat required to raise the temperature of 225 mL of water from $20.0^{\circ} \mathrm{C}$ to $100.0^{\circ} \mathrm{C}$.

Solution:

- since the density of water is $1.00 \mathrm{~g} / \mathrm{mL}$, the mass of 225 mL of water is 225 g
- c for water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
q & =m c \Delta T \\
q & =(225 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\left(100.0^{\circ} \mathrm{C}-20.0^{\circ} \mathrm{C}\right) \\
& =755312 \mathrm{~J} \\
& =75.5 \mathrm{~kJ}
\end{aligned}
$$

2. Calculate the specific heat capacity of a new alloy if a 15.4 g sample absorbs 393 J when it is heated from $0.0^{\circ} \mathrm{C}$ to $37.6^{\circ} \mathrm{C}$.

Solution:

$\begin{array}{ll}m=15.4 \mathrm{~g} & T_{2}=37.6{ }^{\circ} \mathrm{C} \\ q=393 \mathrm{~J} & T_{1}=0.0^{\circ} \mathrm{C}\end{array}$

$$
q=m c \Delta T
$$

$$
393 \mathrm{~J}=(15.4 \mathrm{~g})(\mathrm{c})\left(37.6^{\circ} \mathrm{C}-0.0^{\circ} \mathrm{C}\right)
$$

$$
393 \mathrm{~J}=\left(579.04 \mathrm{~g} \cdot{ }^{\circ} \mathrm{C}\right) \times(\mathrm{c})
$$

$$
c=0.679 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}
$$

Exercises: (Be careful with positive and negative signs!!)

1. Calculate the heat change involved when 2.00 L of water is heated from $20.0^{\circ} \mathrm{C}$ to $99.7^{\circ} \mathrm{C}$ in an electric kettle. (667 kJ)
2. Calculate the heat change associated with cooling a 350.0 g aluminum bar from $70.0^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$. Is the change endothermic or exothermic? Why? (-14.2 kJ)
3. A 175 g piece of iron and a 175 g piece of aluminum are placed in a hot water bath so that they are warmed to $99.7^{\circ} \mathrm{C}$. The metal samples are removed and cooled to $21.5^{\circ} \mathrm{C}$. Which sample undergoes the greater heat change?
(AI; -12.3 kJ Fe; - 6.08 kJ)
4. A 63.5 g sample of an unidentified metal absorbs 355 J of heat when its temperature changes by $4.56^{\circ} \mathrm{C}$.
Calculate the specific heat capacity of the metal. $\left(1.23 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
5. Calculate the specific heat capacity of titanium if a 43.56 g sample absorbs 0.476 kJ as its temperature changes from $20.13^{\circ} \mathrm{C}$ to $41.06^{\circ} \mathrm{C}$.
($0.522 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$)
6. The burning of a sample of propane generated 104.6 kJ of heat. All of this heat was use to heat 500.0 g of water that had an initial temperature of $20.0^{\circ} \mathrm{C}$. What was the final temperature of the water? $\left(70.0^{\circ} \mathrm{C}\right)$
7. 750.0 g of water that was just boiled (heated to $100.0^{\circ} \mathrm{C}$) loses 78.45 kJ of heat as it cools. What is the final temperature of the water? $\left(75.0^{\circ} \mathrm{C}\right)$
