Enthalpy Calculations:

$$
\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}} \quad \text { and } \quad \mathrm{q}=\mathrm{n} \Delta \mathrm{H}
$$

p. 643 \#'s 15-18
p. 645 \#'s 19-23
p. 648, 649 \#'s 24-29

1. A puncture in the tubing of a refrigerator can cause severe frostbite as chloroethane, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$, vaporizes. Use this thermochemical equation to calculate the heat absorbed when 23.6 g of chloroethane vaporizes at its boiling point. (9.66 kJ)

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}_{(\mathrm{l})}+26.4 \mathrm{~kJ} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}_{(\mathrm{g})}
$$

2. This reaction occurs in the catalytic converter of an automobile.

$$
2 \mathrm{CO}_{(\mathrm{g})}+2 \mathrm{NO}_{(\mathrm{g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}+746 \mathrm{~kJ}
$$

a) How much energy is released per mole of carbon dioxide gas produced? ($-746 \mathrm{~kJ} / \mathrm{mol}$)
b) How much energy is released when $945 \mathrm{~g} \mathrm{of}_{\mathrm{CO}}^{2(\mathrm{~g})}$ is produced? $(-160 \mathrm{~kJ})$
3. Given that $\Delta H_{\text {vap }}$ for ammonia, NH_{3}, is $+23.4 \mathrm{~kJ} / \mathrm{mol}$, calculate the heat change for condensing 10.0 g of ammonia? (13.7 kJ)
4. Calculate mass of sodium hydroxide will cause the release of 11.13 kJ of heat when dissolved in water. $\left(\Delta H_{\text {soln }}=-44.51 \mathrm{~kJ} / \mathrm{mol}\right)(10.0 \mathrm{~g})$
5. Calculate the molar enthalpy of vaporization of ammonia if 34.25 kJ of heat is absorbed to vaporize 25.0 g of ammonia. ($23.3 \mathrm{~kJ} / \mathrm{mol}$)
6. As Freon-12, $\mathrm{CCl}_{2} \mathrm{~F}_{2(1)}$, absorbs energy from a refrigerator, it vaporizes. The vaporization of 5.00 g of Freon-12 requires 1.45 kJ of energy.
a) Calculate the molar heat of vaporization of Freon-12. ($35.1 \mathrm{~kJ} / \mathrm{mol}$)
b) Calculate the amount of heat the Freon-12 must absorb in order to cool 115.3 g of air in a fridge from $7^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$. The specific heat capacity of air is $1.01 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. (0.2 kJ)
7. Perform calculations to determine the enthalpy change for each species. (Include an appropriate thermochemical equation in each of your answers.)
a) the condensation of 10.0 g of methanol, $\mathrm{CH}_{3} \mathrm{OH} . \quad \Delta \mathrm{H}_{\text {vap }}=39.23 \mathrm{~kJ} / \mathrm{mol}$
b) the formation of 5.00 g of potassium iodide. $\quad \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-327.9 \mathrm{~kJ} / \mathrm{mol}$
8. The molar heat for the combustion of ethyne is $-1300 \mathrm{~kJ} / \mathrm{mol}$. Calculate the enthalpy change that occurs when 15.4 g of ethyne is burned under standard conditions. (-770 kJ)
9. Why does the molar heat of vaporization for a substance always seem to be greater than its molar heat of fusion?
10. Which event should cause a more severe burn: the condensation of 10.0 g of steam on skin or the cooling of 10.0 g of water from $100^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$?
11. If you are lost in the woods and you become thirsty, would it be better to drink water from a stream than to eat snow? Explain your choice in terms of hypothermia.
12. Why do strawberry farmers spray their crops with a fine mist of water when there is a risk of frost?

