Use: $q_{\text {sys }}=-q_{\text {cal }} \quad$ AND $\quad q=m c \Delta T \quad$ OR $\quad q=C \Delta T \quad$ OR $\quad q=n \Delta H$

1. A 1.23 g sample of ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$, undergoes complete combustion in a calorimeter resulting in a temperature increase of $9.50^{\circ} \mathrm{C}$. The heat capacity of the calorimeter is $6.49 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. Calculate the molar heat of combustion for ethyne. ($-1306 \mathrm{~kJ} / \mathrm{mol}$)
2. A 1.53 g sample of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(\mathrm{~s})}$, undergoes combustion with excess oxygen gas in a calorimeter causing a temperature change from $25.00^{\circ} \mathrm{C}$ to $27.88^{\circ} \mathrm{C}$. The heat capacity of the calorimeter is $8.57 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. Calculate the molar heat of combustion for sucrose. (-5523 kJ/mol)
3. In order to obtain calibration data for a calorimeter, three 2.50 g samples of methanol, $\mathrm{CH}_{3} \mathrm{OH}$, were burned. The average temperature increase was $4.23^{\circ} \mathrm{C}$ was recorded. The molar heat of combustion of methanol is $-726 \mathrm{~kJ} / \mathrm{mol}$. Calculate the heat capacity of the bomb calorimeter. ($13.4 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$)
4. A very cold piece of silver with a mass of 78.41 g is added to a simple calorimeter that contains 150.0 g of water. The temperature of the calorimeter water changes from $19.73^{\circ} \mathrm{C}$ to $16.11^{\circ} \mathrm{C}$. What was the initial temperature of the silver? $\left(\mathrm{C}_{\mathrm{Ag}}=0.240\right.$ $\left.\mathrm{J} / \mathrm{g}^{\circ} \cdot \mathrm{C}\right)\left(-105^{\circ} \mathrm{C}\right)$
5. A new ceramic material underwent for use as an insulator. Part of the analysis involved determining its specific heat capacity. A 20.00 g sample was heated to $200.00^{\circ} \mathrm{C}$ and added to a simple calorimeter with a heat capacity of $1.46 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. The temperature in the calorimeter changed from $24.87^{\circ} \mathrm{C}$ to $27.15^{\circ} \mathrm{C}$. Calculate the specific heat of the ceramic material. ($0.963 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$)
6. A volume of 50.0 mL of $0.50 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid at $22.5^{\circ} \mathrm{C}$ was mixed with 50.0 mL of $0.50 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution also at $22.5^{\circ} \mathrm{C}$ in a simple calorimeter. The highest temperature reached after mixing was $26.0^{\circ} \mathrm{C}$. Calculate the molar heat of reaction for sodium hydroxide. (-58.6 kJ/mol)

Text: p. 664 \# 1.b)
p. 665 \#'s 2.b), 3, \& 4

